ADDENDA POWER SUPPLY

MODEL 4050

The Electrical Parts List has been modified as follows:

Circuit Number	Description	Mfr Code Number	Part Number
C14,C16	Capacitor, tantalum, $1 \mu \mathrm{f}, 50 \mathrm{vdc}$		

SECTION 1
GENERAL DESCRIPTION

1.1 DESCRIPTION

The Model 4050 is a low noise regulated DC source suitable for use with laboratory and industrial instrumentation. The unit supplies from 0 to 40 volts at 5 amperes and is provided with automatic overcurrent and overvoltage protection. The current limiting point and overvoltage crowbar trip point are adjustable by front panel controls.

Rear terminals are provided for remote sensing (compensation for lead losses) or remote programming of the output voltage. A dissipation monitor* insures safe operation of the internal power transistors when remote programming is used.

The Model 4050 is designed for bench use. Panel adapters are available for mounting one or two units in a 19 inch rack.

1.2 ELECTRICAL SPECIFICATIONS

Output: 0 to 40 volts DC, 0 to 5 amperes, continuously adjustable.
Input: 105 to 125 volts, 55 to 440 Hz , single phase, 300 watts (at nominal line voltage).
Regulation: Better than $0.01 \%+3$ millivolts for line voltage variations of $\pm 10 \%$ or 100% changes in rated load.

Ripple and Noise: Less than 500 microvolts rms at 60 Hz line, less than 2 millivolts at 400 Hz line.

Recovery Time: Less than 50 microseconds to return to within regulation limits after a step change (1 microsecond rise time) in rated load of 10 to 100% or 100 to 10%.

Stability: Better than $0.01 \%+3$ millivolts per 8 hour period after warm-up at constant line, load and ambient temperature.

Temperature Coefficient: $0.02 \%+2$ millivolts per degree C.
Programming Constant: 200 ohms per volt approximately.
Source Impedance: Less than 0.003 ohm at $\mathrm{DC}, 0.15$ ohm at $100 \mathrm{KHz}, 1.5$ ohms at 1 MHz .

* Patent applied for.

Current Limiting: 0 to 5 amperes, continuously adjustable. A panel indicator is illuminated when the power supply is operating in its current limited mode.

Overvoltage Crowbar: 5 to 50 volts, continuously adjustable. The panel LIMIT lamp is illuminated when the overvoltage crowbar has "fired".

Operating Temperature Range: 0 to $60^{\circ} \mathrm{C}$.
Output Polarity: Either output terminal may be connected to ground. The maximum potential between any terminal and ground must not exceed 300 volts.

1.3
 MECHANICAL SPECIFICATIONS

The Model 4050 is housed in a portable steel cabinet finished in blue vinyl enamel. The front panel is brushed, anodized aluminum with etched black lettering.

Dimensions: $\quad 7-3 / 4$ inches $\times 8-5 / 8$ inches $X 13-1 / 2$ (depth behind front panel).
Weight: 33 pounds.

SECTION 2
INSTALLATION AND OPERATION

2.1 GENERAL

No preliminary inspection or processing is required. The power supply is ready for operation as shipped from the factory.

2.2 INSTALLATION

a) Connect the line cord to a 105 to 125 volt, 55 to 440 Hz source.
b) Rotate the CURRENT control fully clockwise.
c) Set the METER FUNCTION switch to V and adjust the VOLTAGE and FINE VOLTAGE controls for the desired output voltage as shown on the panel meter.
d) Connect the load to either the front or rear panel DC+ and DC-terminals.

2.3 CURRENT LIMITING

Rotate the CURRENT control fully counterclockwise. Readjust the CURRENT control clockwise until the LIMIT lamp just goes out.

2.4 OVERVOLTAGE CROWBAR

To set the overvoltage trip point, adjust VOLTAGE control to the desired OV and slowly rotate counterclockwise the OVERVOLTAGE CROWBAR control until the LIMIT lamp turns on. To reset, adjust the VOLTAGE control below the overvoltage trip point and turn the AC switch to CROWBAR RESET, then on again.

2.5 SENSING

The points to which the sensing leads are connected are the points at which optimum regulation is obtained. When the output voltage is sensed at the output terminals, the voltage across the load will be:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{V}_{\text {out }}-\mathrm{I}_{1} \times \mathrm{R}_{1 \mathrm{w}} \quad \text { where } \quad \mathrm{V}_{\text {out }}=\text { supply output voltage } \\
& \mathrm{V}_{1}=\text { voltage across load } \\
& \mathrm{I}_{1}=\text { load current } \\
& \mathrm{R}_{1 \mathrm{w}}
\end{aligned}
$$

The unit is connected for local sensing (i.e. the sensing terminals are connected to the output terminals) when it is shipped. However, if remote sensing is desired:
a) Disconnect the links between the S+ and DC+ and S- and DC- terminals at the rear of the supply. Connect the S+ and S- terminals to the positive and negative power leads respectively at the load. ;
b) The wires between the sensing terminals and the load should be tightly twisted together. If more than 6 feet of wire is used, a 20 microfarad capacitor of suitable voltage rating should be connected across the sensing terminals.

2.6 REMOTE VOLTAGE PROGEAMMING

This feature allows the output roltage to be controlled remotely. However, because of the regulator system employed, the programming range is limited by the power dissipation in the series pass treasistors. The curve printed on the rear panel shows programmable ranges for the three settings of the VOLTAGE control. For example, if the VOLTAGE control is set for 40 VDC output, the supply may be programmed from 37 VDC to 41 VDC with a 5 ampere load, or from 25 VDC to 46 VDC with a 2.5 ampere load. The dissipation monitor circuit will automatically limit the series pass dissipation if the unit is operated outside its safe area. The LIMIT light will go on when the monitor circuit is operating.

NOTE: The programming terminals are sensitive to noise and line ripple pick-up. A shielded, twisted pair of wires should be used to connect the programming resistor to the terminals. The shield must be connected to the chassis of the unit. Locate the resistor away from fields caused by solenoids, transformers, AC generators, etc.
a) Adjust the VOLTAGE control until the panel meter indicates the output voltage closest to that at which the supply will be programmed. Set the AC switch off.
b) Disconnect the jumper between the RV1 and RV2 terminals. Connect the programming resistance between RV1 and S- terminals. The value of this resistance is given by:

$$
\begin{array}{ll}
R_{p}=V_{0} \times 200 \text { where } \quad \begin{array}{r}
\Gamma_{\mathrm{p}}
\end{array}=\text { programming resistance in ohms } \\
V_{\mathrm{O}}=\text { desired output voltage change in volts }
\end{array}
$$

c) Connect the load and set the AC awitoh on. The series pass transistors will be protected from excessive dissipation by the dissipation monitoring circuit. The LIMIT lamp will light if operation beyond a safe range occurs.

CAUTION: DO NOT MAKE CHANGES IN THE PROGRAMMING CONNECTIONS WITH LINE VOLTAGE APPLIED TO THE UNIT.

SECTION 3
 PRINCIPLES OF OPERATION

3.1 GENERAL

The Model 4050 uses a conventional series regulator to control output from a variable voltage full-wave rectifier. Series pass transistors Q3 through Q6 act as the control elements. The voltage drop across these transistors is adjusted by a high gain, DC amplifier to maintain the output voltage at some preset level. The dissipation limiting circuit continuously monitors the series pass power dissipation and limits it if an overload should occur. Operating voltages from the DC amplifier and power monitoring circuits are derived from an auxiliary regulator.

3.2 UNREGULATED SOURCE

The output from transformers T3 and T2 is bridge rectified by CR5 and filtered by capacitor C7.

3.3 SERIES PASS ELEMENT

Series pass transistors Q3 through Q6 are connected in parallel. Base drive is provided by Q7 connected as a Darlington amplifier.

3.4 CONTROL AMPLIFIER

Transistor Q11 compares the DC output voltage with the voltage across reference zener VR3. An increase in the output voltage will cause Q11 collector current to fall, reducing the collector current of Q10. This in turn will reduce the collector currents of Q7 and the series pass network and the output voltage will fall. Compensation for load current changes is provided by R33. CR12 compensates for temperature effects.

3.5 DSSSIPATION MONITOR

Q8 monitors the voltage across the series pass transistors. Q9 monitors the voltage across load current sensing resistor R34. Should either of these voltages rise above the level set by the potentiometer, R27 or R29 and R32, Q8 and Q9 will start to conduct, preventing the load current from rising further.

3.6 AUXILIARY REGULATOR

Zener diode VR1 provides regulated 20 vde for the semiconductors in the control amplifier and dissipation monitor. Zener diode VR3 provides the reference voltage for the control amplifier and any change in the reference will be reflected in the output voltage. To minimize these changes, Q2 and VR2 maintain a constant current through VR3 and are compensated against line voltage and temperature changes.

3.7 LIMTT INDICATOR

When the unit is in the current or dissipation limiting mode, Q11 will be in saturation and Q1 will be cut off as a result. This will allow lamp DS2 to light. As soon as Q11 comes out of saturation, Q1 will start to conduct and the lamp will no longer have the voltage needed to sustain ionization.

3.8 PHASE SHIFT NETWORKS

Each transistor and its associated circuitry will introduce some phase shift. Networks such as R39 and C10 correct the gain and phase shift of the DC amplifier and prevent oscillation.

SECTION 4
MAINTENANCE

4.1 MAINTENANCE

Under normal conditions, no special maintenance of the Model 4050 is required. However, the characteristics of semiconductor components do change with age and the following adjustments and calibration should be made at six-monthly intervals:
a) Maximum Voltage Adjustment

1. Rotate the VOLTAGE and CURRENT controls fully clockwise. Rotate the FINE VOLTAGE control fully counterclockwise.
2. Connect the line cord to a 115 VAC supply. Set the AC switch to ON. Set the METER FUNCTION switch to V.
3. Adjust trimmer potentiometer R48 until the panel voltmeter reads 40 volts.
b) Load Regulation
4. Repeat steps 1 and 2 in paragraph a).
5. Connect a differential or digital voltmeter between the S+ and S- terminals.
6. Connect the line cord to a 115 VAC supply and set the AC switch to ON. Note the voltmeter reading.
7. Connect an $8 \mathrm{ohm}, 200$ watt load between the rear panel DC+ and DCterminals. Adjust potentiometer R33 until the voltmeter reading is the same with or without load.
c) Meter Calibration
8. Energize the power supply. Set the METER FUNCTION switch to A.
9. Connect a 0 to 10 A ammeter in series with an 8 ohm , 200 watt load between the DC+ and DC- terminals.
10. Adjust the VOLTAGE and CURRENT controls until the ammeter indicates 5 amperes.
11. Adjust potentiometer R16 until panel meter indicates 5 amperes.

d) Current Limiter Adjustment

1. Energize the power supply. Rotate the VOLTAGE and CURRENT controls fully clockwise.
2. Connect a 0 to 10 A external ammeter in series with a 7 ohm, 250 watt load between the DC+ and DC- terminals.
3. Adjust R29 until the external ammeter indicates 5.5A.
e) Dissipation Limiter Adjustment
4. Connect the power supply to an AC source set to 125 VAC. Set the METER FUNCTION switch to A. Rotate the CURRENT control completely clockwise. Turn VOLTAGE control completely counterclockwise.
5. Short circuit the DC+ and DC- terminals.
6. Connect a 0-50 VDC meter between the DC- output terminal and test point 14 on the printed circuit board.
7. Turn VOLTAGE control fully clockwise to set power supply into the dissipation limit region. The panel meter will indicate increased output current as the control is turned clockwise and then suddenly will reverse and decrease as the control reaches maximum position.
8. Turn VOLTAGE control counterclockwise until the 0-50 VDC meter reads approximately 37 V .
9. Turn trimmer adjustment R27 completely counterclockwise. Then adjust clockwise slowly until panel meter reads 3 amperes.
10. Readjust VOLTAGE control to 37V.
11. Readjust R27 until panel meter reads 3 amperes.
12. Repeat steps 7 and 8 until voltmeter reads 37 V and the panel meter reads 3 amperes at the same time.

1. INTRODUCTION

This Appendix contains an Electrical Parts List, Schematic Diagram, Parts Location Diagram and equipment Warranty.

2. ELECTRICAL PARTS LIST

All electrical and electronic parts are listed in the sequence of their circuit numbers as shown on the Schematic Diagram. A brief description of each part is given, followed by the code number of the manufacturer and his part number. All manufacturers' code numbers are taken from Cataloging Handbooks H4-1 and H4-2, Federal Supply Code for Manufacturers. These handbooks can be obtained from Federal Agencies or ordered directly from the Superintendent of Documents, U.S. Government Frinting Office, Washington, D. C. 20402.

We recommend that all parts with the code number 98095 be ordered directly from Power Designs, Inc. The commercial equivalents of these parts may have wide parameter tolerances or require special factory inspection or modification before they can be used in the power supply.

All components used in the power supply or supplied as replacements are carefully inspected at the factory. Inspections are performed on a 100% basis or at AQL levels to Military Specification MIL-Q-9858 under which Power Designs, Inc. has been qualified.

All semiconductors are inspected on a 100% basis, not only for operating parameters, but also for critical characteristics related to reliability and predictable life expectancy. Some of these characteristics are observed when the device is taken beyond its normal operating regions. These test techniques have been developed under a "predictable reliability's program in operation at Power Designs, Inc. for the past twelve years. Under this program, quality control procedures are constantly revaluated and updated as advances are made in solid state technology and experience is gained from field history.

Semiconductor manufacturers are continually modifying their products. Complete lines are discontinued to be replaced by devices having improved gain, operating voltage levels and frequency responses. The high gain, closed loop DC amplifiers used in regulator circuits are particularly sensitive to slight changes in these parameters. Commercial or military "equivalent" transistors may affect the performance of the power supply. We can assure compliance with the original specifications if replacement semiconductors are ordered from the Factory.

All replacement semiconductors are processed and stocked at the factory to insure complete interchangeability with the devices in the original equipment. These devices are coded with a Power Designs, Inc. part number. For example:

MS	1028	A
Semiconductor	Power Designs, Inc.	Suffix Identifying
Manufacturer's Code	Type	Special Parameters

When ordering replacements, please identify the device as thoroughly as possible, giving the model and serial number if available.

The replacement part you receive may not have the same part number as that shown on the Electrical Parts List. This can be due to several factors:
a. A different prefix indicates that Power Designs, Inc. is using another vendor source. The operating characteristics of the devices are identical.
b. A completely different part number indicates:

1. The original vendor has discontinued manufacture of the item or can no longer manufacture it to the original specifications.
2. A better device for use in a particular circuit has been substituted.
3. Tighter controls for interchangeability have provided greater assurance of reliability with the replacement.

ELECTRICAL JARTS LIST

NOTE: Before replacing semiconductors, see paragraph 2 of this Appendix.

Circuit Number	Description	Mfr Code Number	Part Number
C1	Capacitor, ceramic disc, . $05 \mu \mathrm{f}, 600 \mathrm{vdc}$	98095	CC-34-6
C2	Capacitor, electrolytic, $100 \mu \mathrm{f}, 80 \mathrm{vdc}$	98095	CE-91-. 80
C3	Capacitor, plastic film, $0.1 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-17-2
C4	Capacitor, electrolytic, $51 \mu \mathrm{f}, 25$ vdc	98095	CEX-51-25
C5	Capacitor, plastic film, . $001 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-24-2
C6	Capacitor, plastic film, $0.1 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-17-2.
C7	Capacitor, electrolytic, $10,000 \mu \mathrm{f}, 75 \mathrm{vdc}$	98095	CE-103-75
C8	Capacitor, plastic film, $.001 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-24-2
C9	Capacitor, plastic film, . $01 \mu \mathrm{f}, 200$ vde	98095	CP-16-2
C10	Capacitor, plastic film, . $0033 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-18-2
C11	Capacitor, plastic film, . $01 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-16-2
C12	Capacitor, electrolytic, $680 \mu \mathrm{f}, 50 \mathrm{vdc}$	98095	CE-681-50
C13	Capacitor, electrolytic, $20 \mu \mathrm{f}, 100 \mathrm{vdc}$	98095	CE-103-1
C14	Capacitor, ceramic disc, $1 \mu \mathrm{f}, 3 \mathrm{vdc}$	98095	CC-100M-3AD
C15	Capacitor, plastic film, $0.22 \mu \mathrm{f}, 200 \mathrm{vdc}$	98095	CP-22-2
C16	Capacitor, ceramic disc, $1 \mu \mathrm{f}, 3 \mathrm{vdc}$	98095	CC-100M-3AD
C17	Capacitor, ceramic disc, $0.1 \mu \mathrm{f}, 600 \mathrm{vdc}$	98095	CC-37-6
CR1 thru CR3	Diode, silicon	98095	G188
CR4	Diode, silicon controlled rectifier complementary	98095	C13F
CR5	Bridge rectifier	83003	VB225F
CR9	Diode, stabistor	98095	SI250A (red dot)
CR10 thru CR12	Diode, -silicon	98095	G188
CR13	Diode, silicon	98095	MS9918-2
CR14	Diode, silicon	98095	SY241N
DS1	Pilot Light Assembly (red)	98095	PLA-13
DS2	Pilot Light Assembly (clear)	98095	PLA-15
F1	Fuse, 5A, Slo-Blo	71400	MDX
F2	Fuse, 7.5A, Fast-Blo	71400	AGC
M1	Meter, $0-40 \mathrm{~V} / 0-5 \mathrm{~A}$	98095	MVA-133
Q1	Transistor, silicon, PNP	98095	2N4888
Q2	Transistor, silicon, PNP	98095	MS1028A
Q3 thru Q6	Transistor, silicon, NPN	98095	ST1700C(red dot)
Q7	Transistor, silicon, NPN	98095	MS1700A
Q8, Q9	Transistor, silicon, NPN	98095	TI2270/U
Q10	Transistor, silicon, PNP	98095	MS1028A
Q11	Transistor, silicon, NPN	98095	TI2270/U
Q12	Transistor, silicon, NPN	98095	2N2243A

Circuit
Number

Mfr Code
Number

Part Number

R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13, R14
R15
R16
R17
R18 thru R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39
R40
R41
R42
R43, R44
R45
R46
R47
R48
R49

Resistor, composition, $10 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $100 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $4.7 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $15 \mathrm{k} \Omega, \pm 10 \%, 2 \mathrm{w}$
Resistor, wirewound, $700 \Omega, \pm 5 \%, 5 \mathrm{w}$
Resistor, composition, $47 \mathrm{k} \Omega_{y} \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, precision, metal film, $365 \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, composition, $1.2 \mathrm{k} \Omega, \pm 5 \%, 1 / 2 \mathrm{w}$
Resistor, precision, metal film, $16.2 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, variable, composition, $100 \mathrm{k} \Omega, \pm 10 \%, 1 \mathrm{w}$
Resistor, composition, $10 \mathrm{k} \Omega, \pm 5 \% ; 1 / 2 \mathrm{w}$
Resistor, precision, metal film, $39.9 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, composition, $1 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, precision, metal film, $1.21 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, wirewound, variable, $500 \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$
Resistor, precision, metal film, $14.9 \mathrm{k} \Omega, \pm 0.5 \%, 1 / 4 \mathrm{w}$
Resistor, wirewound, $1.0 \Omega, \pm 5 \%, 5 \mathrm{w}$
Resistor, composition, $56 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $270 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $5.6 \mathrm{k} \Omega, \pm 10 \%, 2 \mathrm{w}$
Resistor, precision, metal film, $2.25 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, precision, metal film, $6.04 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, wirewound, variable, $500 \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$
Resistor, precision, metal film, $1.3 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, wirewound, variable, $100 \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$
Resistor, precision, metal film, $39.2 \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, precision, metal film, $221 \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$
Resistor, variable, wirewound, $200 \Omega, \pm 10 \%, 2 \mathrm{w}$
Resistor, wirewound, variable, $200 \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$
Resistor, wirewound, $0.3 \Omega, \pm 5 \%, 20 \mathrm{w}$
Resistor, composition, $220 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, composition, $15 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$
Resistor, precision, metal film, $15 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$ Resistor, composition, $1.5 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$ Resistor, wirewound, variable, $5 \mathrm{k} \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$ Resistor, composition, $680 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$ Resistor, composition, $4.7 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$ Resistor, precision, metal film, $39.9 \mathrm{k} \Omega, \pm 0.5 \%, 1 / 4 \mathrm{w}$ Resistor, composition, $100 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$ Resistor, composition, $330 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$ Resistor, composition, $10 \mathrm{k} \Omega, \pm 5 \%, 1 / 2 \mathrm{w}$ Resistor, precision, metal film, $1.3 \mathrm{k} \Omega, \pm 1 \%, 1 / 4 \mathrm{w}$ Resistor, wirewound, variable, $200 \Omega, \pm 10 \%, 1-1 / 4 \mathrm{w}$ Resistor, composition, $100 \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$

01121
01121
01121
01121
98095
01121
98095
01121
98095
98095
01121
98095
01121
98095
98095
98095
98095
01121
01121
01121
98095
98095
98095
98095
98095
98095
98095
98095
98095
98095
01121
01121
98095
01121
98095
01121
01121
98095
01121
01121
01121
98095
98095
01121

EB1001
EB1045
EB4721
HB1531
RW-701-3RA
EB4731
RD-3650-1QA
EB1225
RD-1622-1QA
RVC104B4-1
EB1035
RD-3992-1QA
EB1021
RD-1211-1QA
RWTP-501-C4
RD-1492-6QA
RW-010-3RA
EB5601
EB2711
HB5621
RD-2251-1QA
RD-6041-1QA
RWTP-501-C4
RD-132-1QA
RWTP-101-C4
RD-39F2-1QA
RD-2210-1QA
RWV201C4-. 87
RWTP-201-C4
RW-003-3F
EB2241
EB1531
RD-153-1QA
EB1521
RWTP-502-C4
EB6811
EB4721
RD-3992-6QA
EB1011
EB3311
EB1035
RD-132-1QA
RWTP-201-C4
EB1011

Circuit Number	Description	Mfr Code Number	Part Number
R50	Resistor, variable, wirewound, $10 \mathrm{k} \Omega, \pm 10 \%, 4 \mathrm{w}$	98095	RWV103M4-5.06
R51	Resistor, variable, wirewound, $200 \Omega, \pm 10 \%, 2 \mathrm{w}$	98095	RWV201C4-. 87
R52	Resistor, composition, $56 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$	01121	EB5631
R53	Resistor, composition, $3.9 \mathrm{k} \Omega, \pm 10 \%, 2 \mathrm{w}$	01121	HB3921
R54	Resistor, composition, $100 \mathrm{k} \Omega, \pm 10 \%, 1 / 2 \mathrm{w}$	01121	EB1041
S1	Switch, toggle, SPST	98095	ST-5
S2	Thermostat	98095	STH-2
S3	Switch, toggle, DPDT	98095	ST-16
T1	Transformer, auxiliary	98095	TTH-27
T2	Transformer, variable, auto	98095	TTV-3B
T3	Transformer	98095	TTM-4050(*)
VR1	Diode, silicon, zener	98095	1N4881-2(vio dot)
VR2	Diode, silicon, zener	98095	SV359E
VR3	Diode, silicon, zener	98095	TS825F
VR4	Diode, silicon, zener	98095	IN4881
VR5	Diode, silicon, zener	98095	IN5067-1(red dot)

CODE LIST OF MANUFACTURERS:

01121 Allen Bradley Co.
71400 Bussman Mfg. Division
83003
98095

Varo, Inc.
Power Designs. Inc.

Milwaukee, Wisconsin
St. Louis, Missouri
Garland, Texas
Westbury, New York

partial left sioe view of unit

PANEL-REAR VIEW

partial right side view of unit

SHEET 2 OF 2

